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Thermal fault detection of lithium-ion
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based model
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Battery packs develop faults over time,many ofwhich are difficult to detect early. For instance, cooling
system blockages raises temperatures but may not trigger alerts until protection limits are exceeded.
Thiswork presents amodel-basedmethod for early thermal fault detection and identification in battery
packs. By comparing measured and estimated temperatures, the method identifies faults including
failed sensors, coolant pump malfunctions, and flow blockages. The core is a high-accuracy
temperature estimation model, integrating a physics-based thermal model with a neural network,
achieves a rootmean square error of 0.39 °C and amaximumerror of 1 °C under aUS06 discharge and
6C charge at 15 °C. Tested on a 72-cell air-cooled pack, the method detects faults using only eight
temperature sensors within 13 to 45minutes, with zero false detections in 11 testing cycles. This
approach enables early fault alerts, enhancing reliability and safety in electric vehicles.

Lithium-ion battery packs (LIBPs) play a crucial role in electrified trans-
portation systems. The cost of LIBPs has a substantial impact on the
manufacturing expenses of electric vehicles (EVs), typically representing
25%of the total EVproduction cost1, and75%of thepowertrain cost2. LIBPs
can experience a range of faults and failures over time, and many of these
issues are challenging to detect directly through sensor measurements.
Failure to detect and identify these faults can lead to accelerated battery
degradation and, in the worst case, trigger a battery fire or explosion3,
ultimately leading to increased replacement or warranty costs4. One of the
main functions of a batterymanagement system (BMS) should be capable of
is detecting and identifying these faults early enough to avoid severe con-
sequences and potential thermal runaway5.

Various fault types can occur in LIBPs, potentially leading to severe
consequences including thermal runaway. Common faults include internal
and external short circuits, contactor failures, blown fuses, cooling system
malfunctions, and sensor reading errors, etc. Internal short circuits are a
primary cause of thermal runaway6, often triggered by mechanical abuse,
dendritic growth, or internal flaws that lead to direct contact between the
positive and negative electrodes within the battery7. External short circuit
refers to the direct connection between the positive and negative terminals
outside the battery. It can arise frommultiple causes, such as deformation or
crushing of the battery case, seal failures that permit dust or moisture
infiltration, shorted sampling harnesses, or degraded high-voltage

insulation8. Several studies have addressed internal9–11 and external12,13

short circuit fault detection by analyzing anomalies in the BMS measure-
ments of current and voltage signals. LIBPs typically incorporate hundreds
of sensors to ensure safe and efficient operation, including voltage, current,
temperature, position and gas sensors14. However, the likelihood of faults
occurring in any sensor increases with the number of sensors. As the BMS
essential functions rely on the accuracy of the collectedmeasurements from
the sensors, neglecting any of the sensor reading faults could lead to
incorrectly reporting data to the driver and several safety hazards.Advanced
anomaly detection BMS algorithms15,16 are essential to enable a reduction in
sensor count, ultimately lowering sensor replacement costs andBMSsystem
failure.

Battery fault detection methods can be generally grouped into
threshold-based method and model-based method14,17. Threshold-based
methods detect faults mostly by measured cell or pack voltage
anomalies18–21. The measured cell and pack voltages demonstrate a corre-
lation with several electrical faults14; however, voltage is less sensitive to the
temperature of the cell and may not be sufficient to detect thermal faults
where the temperature change is quite minor. There are various thermal
faults that can occur in the LIBPs without causing immediate temperature
rise or voltage variation, including cooling pump failure, partial or complete
coolant flow blockage in a pack or module, loss of coolant pump control
(resulting in too little or not enough coolant flow), and temperature sensor
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measurement error. Detecting these thermal faults from voltage anomalies
is challenging, yet they can lead to battery cells operating in unusual con-
ditions, potentially accelerating battery degradation and posing safety
hazards. Model-based method detects faults by monitoring the error
between sensor measurement and model estimation. A few studies have
developed LIBP thermal fault detection systems based on measured tem-
perature signals, which detects higher than normal heat generation by the
battery22 and detects the possibility of thermal runaway occurring23. How-
ever, such thermal faults are relatively easy to detect, as they result in a
significant temperature rise. Consequently, these methods may be insuffi-
cient for distinguishing more nuanced faults, such as partially blocked
coolant channels, which are investigated in this paper.

Typically, an accurate thermalmodel serves as thekey to a thermal fault
detection algorithm’s success in reliably identifying thermal anomalies.
Battery temperature estimationmodels can bemainly catheterized into four
types24, namely electrochemical impedance based25, full-order thermal
model26, reduced-order lumped parameter model27, and data-driven
model28. Electrochemical impedance-based method generally relies on the
temperature dependency of battery impedance obtained from electro-
chemical impedance spectroscopy (EIS) tests25,29. Therefore, it needs a
specially designed excitation generator for onboard impedance measure-
ment, which would inevitably increase the hardware cost and complexity.
The full-order thermal model utilizes partial differential equations (PDEs)
to represent the thermal behavior of battery cells30. While it offers high-
fidelity insights into the internal thermal distribution of the battery, solving
these PDEs in real-time is impractical due to the limited computational
power available in onboard BMS systems. To address the computational
challenges of full-order models, reduced-order lumped parameter (LP)
models31–34 have been developed by incorporating reasonable assumptions
and applying model order reduction techniques. In LP models, simple
circuit components such as the current source, capacitors, and resistors are
used to mimic heat generation, heat accumulation, and heat transfer.
However, it is challenging for LP models to effectively monitor thermal
states of a battery pack due to limited temperature sensors in a battery
system. Also, LP models often require specialized tests conducted in a
laboratory environment.Consequently, the performance of physicalmodels
for real-life operation, especially when considering battery degradation, can
be sub-optimal.

Data-driven thermalmodels, particularly neural networks (NNs), have
been utilized in several studies to estimate battery core and surface
temperature28,35–38. NNs can be trained from both laboratory test data and
real-life operation data. The laboratory data helps establish a foundational
understanding, while the real-life data ensures that the NN can adapt to the
dynamics and sometimes unpredictable conditions it may face in deploy-
ment. Nevertheless, data-driven models lack physical meaning, making
their performance sensitive to data faults and outliers. This feature poses
challenges to the robustness of data-driven thermal models. Additionally,
machine learning models are prone to overfitting to specific training data-
sets, which can result in poor generalization and suboptimal performance
under new or varying operating conditions. To overcome these limitations,
combining data-driven algorithms with existing thermal models offers a
promising approach39, enhancing robustness and reliability compared to
purely data-driven methods. Machine learning models offer adaptability to
new and dynamic conditions but lack interpretability and generalizability.
Conversely, physics-based models ensure robustness, explainability, and
applicability across different chemistries and sizes. By integrating the two,
the proposed model achieves adaptability while maintaining reliability and
accuracy, making it suitable for diverse applications and fault detection in
battery systems. However, integrating physics-based and data-driven
models for temperature estimation remains in its early stages24, particu-
larly for the more complex pack-level applications.

This work proposes a model-based method for detecting and identi-
fying thermal faults in a battery pack before any protection limits are
reached. The key contributions are as follows: 1) Temperature Estimation
Model. A highly accurate temperature estimationmodel, which integrates a

physics-based thermal model and a feedforward neural network (FNN) is
built. This model achieves a root mean square error of 0.39 °C and a max-
imum error of 1 °C for US06 discharge and 6C charge profiles at 15 °C. 2)
Thermal Fault Detection and IdentificationMethod.A battery thermal fault
detection and identification method is proposed. This method compares
measured temperatures with estimated temperatures to identify and classify
fault types accordingly. To experimentally validate the concept, the algo-
rithm is applied to a 72-cell air-cooled battery pack with one temperature
sensor per cell. It only requires measurements from eight of the 72 tem-
perature sensors for effective fault detection. Faults were applied to the pack
during electric vehicle drive cycles, and the algorithmwas able to detect and
identify each fault type within about 45min, well before any temperature
limits were reached.

As the EV space expands, with a clear trajectory towards software
centered vehicles, our proposedmethod strives to offer early fault insights to
drivers, fleet managers, and original equipmentmanufacturers before faults
escalate to severe levels. These insights are crucial for all stakeholders to
implement corrective measures promptly and avert catastrophic battery
failures. The primary goal of our approach is not only to mitigate safety
concerns associated with driving electric vehicles but also to curtail the
operational costs of running these vehicles, thereby reducing the overall cost
of ownership. Notably, our method stands out as it doesn’t necessitate the
installation of additional components, sensors, or parts. The fault detection
methodwas rigorously tested and validated under real-life drive cycles, high
C-rate charging conditions, and diverse fault scenarios using an actual
battery pack. The pack validation featured a temperature sensor ratio of one
per nine series-connected cells, reflecting typical production designs,
thereby demonstrating the method’s practical reliability and robustness.

Results and Discussion
Validation of integrated physics and deep neural network based
temperature estimation model
Ahighly accurate batterypack temperature estimationmodel composedof a
physical-based thermal model integrated with a machine learning-based
model, as illustrated in Fig. 1, is the firstmain contribution of this work. The
model receives inputs including the state of charge (SOC) of each individual
cell, the battery pack current, and the temperature at the air inlet. It then
processes these measurements to output an estimated temperature for
each cell.

In thiswork, the fan speedwasfixed, ensuring that inletwind speed and
pressure remained approximately constant throughout the experiments. As
a result, the inlet air temperature is the only variable that mainly impacted
the thermal behavior of the system. Additionally, parameters such as wind
speed and pressure are typically not measured in air-cooled battery packs
and therefore would not be available as inputs for a thermalmodel designed
for practical implementation in a BMS. This consideration ensures the
model remains both accurate and practical for real-world applications.

The estimated temperature assumes proper operation of the pack (i.e.,
no faults), and the difference betweenmeasured and estimated temperature
is therefore used in the fault detection process. The physical-based model
consists of a LP thermal model, shown in Fig. 1b, which is developed using
the thermal parameters of each component in the pack, including cells, tabs,
and airflow. This model is coupled with an electrical equivalent circuit
model (ECM) to calculate the cell loss and to estimate the temperature of
each battery cell. The machine learning model employs a FNN to create an
improved estimate of cell temperatures. To determine the inputs for the
FNN, a Spearman’s rank correlation analysis is performed on a range of
measurement and estimation values which could be used as inputs, and the
results are illustrated in Fig. 1d. The analysis results show a strong corre-
lation between the measured cell temperature rise and the temperature rise
estimated by the LP thermalmodel,ΔT̂LP . Furthermore, low-pass filters are
applied to the current and voltage measurements since they can effectively
add memory information by taking the average of measurements over the
last many time steps40. According to the correlation analysis, pack voltage
and its filtered values have no correlationwithmeasured temperature rise as
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expected, since battery loss is not a function of voltage on its own. In
contrast, pack currentmeasurements, especiallyfiltered currentwith 1mHz
frequency low-pass Butterworth filter, have a strong correlation with
measured temperature rise due to cell loss being current dependent. The
values which are most highly correlated with temperature were selected as
FNN inputs, including cell temperature rise estimated with the LP thermal
model (ΔT̂LP), current with a 1mHz (If) corner frequency filter, air inlet
temperature (Ta), and the cell SOC.

To prove the benefits of the proposed integrated thermal model, three
LIBP temperature estimation models were compared, including a physics-
based LP model on its own, a FNN model on its own, and a model which
integrates the LP and FNN (LP+FNN) models together. The models were
tested using standard vehicle drive cycles and different C-rate charges,
which were not included in themodel characterization or training data sets.
The test data include theUDDS, LA92,HWFET, andUS06 drive cycles and
charge profiles ranging from 4 C to 10 C rates at ambient temperatures of
15 °C and 25 °C. These drive cycles range from city and less aggressive to
urban and aggressive driving conditions.

Figure 2b presents the estimated versus measured temperature for
cell#1 for aUS06 discharge and 6 C-rate charge profile applied at 15 °C (test
profile illustrated in Fig. 2(a)), which is one of the highest temperature rise
cases. Measured temperature steps in increments of 1 °C, which is the
resolution of the pack temperature sensing unit. The FNN model by itself
struggled to estimate the cell temperature, and has a high root mean square
error (RMSE) andmaximumerror of of 2.6 °Cand around5 °C respectively.

The LP model has better accuracy than the FNN model, with an RMSE of
1.4 °C and a maximum error of around 2 °C. In contrast, the LP+FNN
model achieved a significantly improved accuracy compared toboth LP and
FNN models on their own, with just 0.39 °C RMSE and 1 °C maximum
error at 15 °C for US06 discharge and 6C charge profiles.

In Fig. 2c, the error of each temperature estimationmodel is presented
for eight different testing profiles. The plot shows the average error between
the model and measurements for each of the 72 temperature sensors
installed in the 72-cell battery pack. The average RMSE ranges from 0.8 to
1.7 °C, 0.9 to 3.4 °C and 0.3 to 0.6 °C for the LP, FNNand LP+FNNmodels,
respectively. The LP+FNN model is shown to accurately estimate the
surface temperature of the cells over a range of thermal conditions with an
RMS error about 1/3 to 1/4 of the LP and FNN models. This shows that
either model on it own is not sufficient to provide the highly accurate
estimate of temperature which is necessary for the temperature anomaly
drivenmodel proposed in this paper.These results underscore the efficacyof
FNN+LP models in modeling cell thermal behavior by integrating infor-
mation from both physical thermal parameters and machine learning
training derived from experimental data. This highly accurate temperature
estimation model forms the basis of the fault detection algorithm proposed
in the subsequent section.

Fault detection algorithm validation
Figure 3 illustrates the function of the proposed fault detection and iden-
tification method. It works by comparing the measured and the modeled

Fig. 1 | Overview of the proposed LP + FNN
integrated battery pack thermal model.
a Integrated LP + FNN thermal model. b Lumped
parameter pack thermal model. It estimates the
temperature of individual cells by accounting for
thermal conduction through bus bars and con-
vective heat transfer from airflow between cells.
c Lumped parameter cell thermalmodel. It is used in
b to simulate each individual cell’s thermal behavior
within a pack LP thermal model. d Correlation
coefficients between measured cell temperature rise
and other measured or estimated values. Parameters
with high correlation scores are selected as inputs to
the FNN model.
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battery pack temperatures and then identifying faults according to tem-
perature residual error calculation and evaluation. To emulate real-world
scenarios where there are relatively few temperature measurements across
the pack, only eight temperature sensors were utilized in the fault detection
algorithm. The algorithm first calculates the residual error between the
measured and LP+FNN modeled temperature for each of the eight mea-
surementpoints.The residual probability value gi is then calculated basedon
a mathematical formulation of the residual error. If gi exceeds any of the
threshold boundaries, a fault is detected and the fault is identified based on
the eight error flag values. For example, if all error flags are high, this
indicates a failure of the coolant pump, while if just two adjacent flags are
high it indicates the cooling manifold of individual battery module is
blocked. This robust fault detection approach is the second main con-
tribution of the paper, and is described in detail in theMethods section and
Supplementary Fig. 1. As summarized in Table 1, the fault detection algo-
rithm is capable of identify several different cases - e.g., no/Low flow, high
flow, module blockage, and sensor failure - all of which are validated by
introducing the specific fault to the physical battery pack.

In Fig. 4a, the fault detection algorithm was validated on a prolonged
driving scenario, composed of aUS06 drive cycle discharge, 6C-rate charge,
UDDSdischarge, 4C-rate charge, LA92discharge, and8C-rate charge, all at
15 °C.The charge anddischarge rateswere veryhighbecause thepack tested
has a high power capability, making it suitable for a plug-in hybrid with a
very short all electric range for example. At the beginning of the profile,
during the US06 cycle, the systemwas fault-free. Then, after eight minutes,
the fan was switched off for 36 minutes throughout two fast charges and an
additional drive cycle discharge. Then, the fan was switched on again for an

hour and 17 minutes during the UDDS discharge and 4C charge, which is
sufficient time for the cells to return to their non-fault status. The fan speed
was then increased to 200%of its nominal value at the beginningof theLA92
profile, which lasts for 45 minutes, and was finally returned to its nom-
inal speed.

Figure 4b shows measured and estimated battery pack temperatures,
and the corresponding residuals (e) and the accumulated log of the com-
mutative probability of the residual (g) values. Furthermore, fault flags and
identified fault types are recorded according to the analysis of residuals. At
the beginning, the system shows no fault flags. Then after 20 minutes,
12minutes after the fanwas turned off, thefirst twohighflagswere recorded
from cell#24 and cell#60, indicating the temperatures of these cells were
higher than expected. A waiting window of 10min after the first fault flag
occurs was used, and all eight sensors showed high flags after this waiting
period. According to the logic flowchart illustrated in Supplementary Fig. 1,
the fault was then identified as no/low flow by the algorithm, since this fault
case is defined as occurring when there are five or more high flags. The
proposed algorithm was therefore demonstrated to detect the fan failure
fault 22minutes (10-minute wait window) after fan is turned off and
9 minutes before the battery pack temperature reaches its highest tem-
perature of 45 °C. This feature ensures the user or the battery management
system has enough time to react to the fault, preventing the battery pack
from being damaged or the vehicle from halting operation unexpectedly.
The fault is then cleared sixteen minutes after the fan was turned back on
when the residuals all went back within the μ ± 3σ error threshold, as
discussed in the Methods section. This shows that it is necessary to record
faults in the memory in the BMS so that there is a record of intermittent

Fig. 2 | Temperature estimation accuracy com-
parison between LP, FNN, and LP+FNN models.
a,bPerformance comparison for the test profilewith
US06 discharge and 6C charge profiles at 15 °C on
cell#1. a, The US06 discharge and 6C charge profile.
b Temperature estimation accuracy comparison on
cell#1. c Temperature estimation RMS errors for all
testing profiles on 8 cells. The average RMSE for LP,
FNN, and LP+FNNmodels are 1.30 °C, 1.84 °C, and
0.45 °C, respectively.
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faults. The fan speed was then increased to 200% and it took nine minutes
for the system to record the first low flag from cell#13, indicating that pack
temperature was lower than expected. After the ten minute waiting time
window, eight low flags were recorded, which was identified based on the
flag conditions as pack airflow higher than the setpoint. The residual
threshold μ ± 3σ for low flag is tuned to be −2.36 °C which is lower than
2.62 °C of the high flag (absolute value comparison), to reflect the truth that
temperature rising is more common and severe than decreasing in our
experimental cases and real-life applications.

The algorithm was experimentally validated for a wide array of cases,
including air/liquid flow blockage and temperature sensor fault, as is shown
inTable 1. In Supplementary Fig. 3, fan speedwas halved at the beginning of
the UDDS cycle to simulate another more challenging No/Low fault case.
After 45 minutes, five high flags were recorded, indicating temperature of
these cells is higher than expected and low flow fault was effectively detected
and identified. In the case shown in Supplementary Fig. 4, we blocked
airflowbetween cell #24 and cell #36 to simulatemodule blockage fault. Two
high flags were recorded during the 10-minute waiting window on cell #24
and # 36, declaring airflow blockage fault was identified by our model.
Additionally, we designed four experimental cases to simulate faults related
to failed temperature sensors in Supplementary Fig. 5. These include
applying offsets of +1/+2 °C on sensor #49 and scaling adjustments of
−0.05%/−0.1% on sensor #60. The proposed fault detection algorithmwas
tuned to successfully detect faults when a+2 °C offset was applied to sensor
#49 or a −0.1% scaling adjustment was applied to sensor #60, while it
bypassed cases with a+1 °C offset or −0.05% scaling adjustment which are
within sensor precision tolerance.

Throughout these test cases, which cover 6.5 h of operation and 11
charge discharge cycles, there was not a single false fault flag and the faults
were identified in a relatively short time, between 13 and 45 minutes,
demonstrating the overall robustness of the approach. The proposed ther-
mal fault detectionmethod accounts for current operational conditions but
recognizes the potential impact of battery aging on model accuracy. To

address this, incorporating automated ECMparameter updates is suggested
as a direction for future work to enhance long-term adaptability and
minimize aging-related errors.

Conclusion
Integrating a physical thermal model and a deep neural network-based
thermal model is a promising route for creating highly accurate thermal
models which are necessary for the proposed lithium-ion battery thermal
fault detection algorithm. The developed battery pack thermal model, by
combining a LP thermal model with FNNmodel achieves a very low 0.5 °C
RMS error across a range of challenging conditions, compared to 1.3 °C
RMSE for anLPmodelon its ownand1.8 °CRMSE for anFNNmodel on its
own. This high-accuracy thermal model is employed as the cornerstone of
the proposedbattery pack thermal fault detection algorithm,which applies a
unique residual based fault detection approach. The algorithm is experi-
mentally validated using a 72-cell air-cooled battery pack. It requires mea-
surements from only eight of the 72 temperature sensors installed in the
pack and successfully detectsmultiple faults, including sensor faults, cooling
fan failure, airflow blockage, and airflow exceeding the setpoint. Each fault
type is detected and identified within about 45min, well before the battery
reaches excessive temperatures for the faulty cooling system cases. This
quick detection time ensures that the user or battery management system
has enough time to react to and repair battery pack faults, thus prolonging
battery lifetime and preventing damaged and unexpected loss of operation
of the vehicle.While the thermalmodelingmethodology and algorithmwas
demonstrated for an air cooled pack, the approach is generalized and could
be applied to a pack cooled in any ways (e.g. liquid, refrigerant, heat pipe,
etc). The proposed algorithm is key to the creation of future smart battery
packs, which would have a wide range of different types of fault detection
and identification algorithms, ensuring safe and reliable operation, and
predictable repair, throughout the life of the pack.

While the current model demonstrates robust accuracy in controlled
laboratory environments, opportunities remain to expand its robustness to

Table 1 | Summary of fault-free and faulty tests performed on air-cooled pack

Fault cases Flag status (H [High], L [low], - [no flag]) Detected fault Time to detect fault*

#1 #13 #24 #36 #37 #49 #60 #72

Fault-free - - - - - - - - No fault -

Fan off H H H H H H H H No/Low flow 22min

200% Fan speed L L L L L L L L High flow 19min

50% Fan speed H H H - H - H - No/Low flow 45min

Cell #24-#36 blocked - - H H - - - - Module blockage 32min

Sensor #49 + 1 °C offset - - - - - - - - No fault -

Sensor #49 + 2 °C offset - - - - - H - - Sensor failure 43min

Sensor #60 − 0.05% scale - - - - - - - - No fault -

Sensor #60 − 0.1% scale - - - - - - L - Sensor failure 13min
*Fault detection time includes 10-minute wait window.

Fig. 3 |Overview of the proposed fault detection and
identification method. Temperatures 
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field variability and long-term applicability. Future work will focus on
integrating real-time aging updates to enhance predictive accuracy over cell
aging process. Additionally, the model will be adapted to field conditions
with uncontrollable ambient temperatures, ensuring its effectiveness across
diverse applications. These advancements aim to improve the model’s
adaptability, enabling broader real-world implementation.

Methods
Data generation
Supplementary Fig. 6a shows the air-cooled LIBP utilized in this study,
which is a prototype high power pack, suitable for hybrid or plug in hybrid
vehicle applications, with a total energy of 1.3 KWh and 266 V nominal
operating voltage. This battery pack consists of 72 series-connected SB
Limotive cells, as shown in Supplementary Fig. 6b, each with 5.2 Ah
nominal capacity and 3.7 V nominal voltage. The detailed specifications of
thepack andcell canbe found inTable S1. Several characterizationanddrive
cycle tests are conducted on an individual cell and the pack to develop cell
and pack thermal model, as illustrated in Tables S2 and S3.

Integrated LP+FNN battery thermal model
In this study, the concept of integrating a physical model and a machine
learningmodel, shown in Fig. 1, is proposed to develop an accurate thermal
model of a multi-cell LIBP. A detailed illustration of how the thermal
parameters are determined can be found in Supplementary Note 1.

The LP cell model shown in Fig. 1c is adopted to model the thermal
behavior of one cell, where the thermal mass and the generated heat are
assumed to be concentrated in the center of the cell. The heat is generated at
the core and then transferred from the core to the surface of the battery by
thermal conduction. The heat generation, absorption and transfer can be
described by the heat balance equations described follows:

Ploss¼Plossirr
þ Plossrev ð1Þ

Plossirr
¼ I2RCh;Dch ð2Þ

Plossrev
¼ �ITc

dOCV
dt

ð3Þ

mbCb
dTc

dt
¼ Ploss þ

ðTc � Ts1Þ
ð2Rc;eqÞ

þ ðTc � Ts2Þ
ð2Rc;eqÞ ð4Þ

Where RCh,Dch is the electrical equivalent charge or discharge resistance,
OCV is the cell open circuit voltage,mb is the weight of the battery,Cb is the
specificheat capacity of the cell,Tc is the core temperature andTs1,Ts2 are the
surface temperature of the two largest area sides of the battery cell.Ploss is the
total power loss and Rc,eq is the thermal lumped core thermal resistance of
the battery.

Fig. 4 | Validation of the fault detection method
under specific conditions. The cases considered
involve Fan Off and Fan Speed 200% faults at a
temperature of 15 °C. a Cells' measurements and
fan status. The test cycles include US06 discharge
and 6C charge, UDDS discharge and 4C charge,
LA92 discharge and 8C charge. b temperature resi-
duals and fault flags status. 16 minutes After fan
turns off, 8 high fault flags appear. 9 minutes after
fan speeds up from 100% to 200%, 8 low fault flags
appear.
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The core thermal resistance is divided equally between the cell
surface into two halves to mimic the left and right sides of a prismatic
cell. In lithium-ion batteries, the heat is generated from two sources,
including irreversible and reversible heat losses41. The irreversible heat
losses represent the ohmic losses of the internal cell components,
including electrodes, tabs, and chemical reactions. They can be repre-
sented by an equivalent electrical resistance that consumes power in the
form of heat as in (2). The reversible power losses represent the change in
the entropy of the chemical reactions. The reversible heat losses can be
calculated by multiplying the rate of the change of the battery open
circuit voltage (OCV), battery current (I) and core temperature (Tc) as in
(3). Reversible loss is neglected in the analysis since it usually contributes
only a small amount to heat generation and the entropic heating coef-
ficient is difficult to measure without specialized equipment. Finally, the
summation of these heat components is assumed to be transferred by
conduction to the surface of the cell.

A thermal LP model for an air-cooled multi-cell pack is developed
using the thermal parameter of each component in the pack, including cells,
tabs, and airflow, as shown in Fig. 1b. The heat is generated at the core of
each cell and transferred from the core of the cell to the surface by con-
duction has thermal properties represented by thermal resistance. Then the
heat is assumed to transfer from the two largest area surfaces (Ax) to the air
by convection. The other cells’ surfaces (Ay andAz) are isolated with plastic
casing and printed circuit boards (PCBs), and the heat transfer through
these surfaces is neglected. The heat transfer is initiated by each cell and
transferred to the adjacent cell by conduction and to the airflow by con-
vection means which are presented by lumped contact (Rcc) and channels
(Rh) thermal resistances. The core and contact thermal lumped resistance is
considered fixed for all cells assuming identical cells properties and con-
nections, while the channels thermal resistances vary due to the variation of
the airflow between cells. In addition, the heat capacity of the pack com-
ponents other than the cells is lumped and is represented by two shunt
thermal masses (mcCc) added to each cell side. The governing thermal
equations describing the heat generation and transfer between every two
adjacent cells can be written as follows:

mbCb
dTc;i

dt ¼ Plossi
þ Tc;i�Ts1;i

2Rc;eq
þ Tc;i�Ts2;i

2Rc;eq
i 2 N

Side1 : mcCc
dTs1;i

dt þ Ts1;i�Tc;i

2Rc;eq
þ Ts1;i�Ta

Rh;i
þ Ts1;i�Ts2;i�1

Rcc
¼ 0

Side2 : mcCc
dTs2;i

dt þ Ts2;i�Tc;i

2Rc;eq
þ Ts2;i�Ta

Rh;iþ1
þ Ts2;i�Ts1;iþ1

Rcc
¼ 0

ð5Þ

Where mcCc is pack distributed lumped heat capacity of the pack compo-
nents other than cells in J/K. Rh,i is the lumped channel resistance of the
cell#i. Rcc is the equivalent lumped thermal resistance of the tap connecting
two adjacent cells andN is the total number of cells in onemodule,Ta is the
inlet air temperature which is always equal to the chamber ambient
temperature.

To build a machine learning model that could mimic the thermal
behavior of the battery pack, a FNN machine learning structure is
selected as shown in Supplementary Fig. 7. Previous work28 demonstrated
that FNN, combined with external filters, achieved lower error and better
modeling accuracy than long short-term memory network (LSTM) for
temperature estimation tasks. Furthermore, the proposed model is
designed to operate on a BMS, where computational efficiency is crucial.
Compared to LSTM and other temporal machine learning methods such
as gated recurrent units (GRU), FNN offers a lighter and more com-
putationally efficient solution, making it ideal for integration into
resource-constrained BMS environments. This balance of accuracy and
efficiency makes FNN a suitable choice for the proposed model. Details
of FNN development can be found in Supplementary Note 2. Different
measured parameters are collected from the pack during operation,
including cell voltages, pack voltage, pack current, cell SOC, cell tem-
perature rise, and inlet air temperature. Using all measurements will
impact the complexity of the training process, and in some cases, it leads

to over-fitting42. Hence, Spearman’s rank correlation is performed
between the different inputs and the output, measured temperature rise
for one cell43, to obtain the best features to input to the FNN model. The
correlation coefficients for each measurement with the cell surface
temperature rise are listed in Fig. 1d. Based on the correlation study, the
filtered current with 1 mHz (If) corner frequency, the cell SOC, air inlet
temperature (Ta), and estimated LP model cells’ temperature rise (ΔT̂LP)
are selected as optimal FNN model inputs. Supplementary Fig. 8 shows
the structure of the investigated FNN temperature estimation models for
one cell, including inputs, layers, activation functions, and output.

Multi-fault detection and identification method
The proposed method for fault detection relies on assessing the residuals
derived from the variance between measured and modeled temperatures.
Initially, these residuals are generated and subjected to evaluation,
leading to the subsequent determination of fault presence and type. The
calculation of the residual (ej) involves the disparity between the sensor
readings and model temperatures, as indicated in Equation (6). Notably,
a cumulative probability model, as described in refs. 44,45, is employed
for fault assessment. Residual data from fault-free test cases are fitted to a
normal probability density function, yielding the mean value (μ) and the
variance (σ) of the residuals. For the error values which exceed μ ± 3σ,
and are therefore well outside the normal distribution of the data, the log
of the probability distribution function (PDF) of the error data is sum-
med using equations (7) to (8) to calculate the g function. Employing the
logarithm of the probability density function offers the advantage of
assigning greater weight to residuals with lower probabilities, i.e., those
with large error values lying far beyond the μ ± 3σ residual thresholds.
This characteristic, illustrated in Supplementary Fig. 9, facilitates expe-
dited fault detection. Fault determination is accomplished by analyzing
the g values in instances where measured temperatures exceed modeled
temperatures and vice versa. The g function accumulates each time a
residual surpasses three standard deviations threshold (μ ± 3σ), resetting
to zero when the residual reverts within these thresholds. A fault flag is
then employed when the g value exceeds pre-established limits (J), as
defined in Equation (9). This methodology achieves robust and fast
detection of faults by only accumulating residual error values which are
well outside the distribution of error experienced in a fault free battery
pack, and by weighting larger errors more heavily.

The fault identification methodology accumulates the residual and
assesses a fault flag value (F) for each sensor, based on the g function.
Subsequently, each fault type is determined based on the number and
characteristics of the fault flags. A fault is declared when one or more
flags are present for a period exceeding ten minutes. The specific fault
type is then determined based on the nature and quantity of the
accumulated flags.

For instance, if a flag F is logged for a solitary sensor, a sensor failure
fault is declared, indicating there is no issue with the cooling system and
that a single sensor is reading inaccurately. If two to four consecutive
sensors exhibit a high flag F, a module blockage fault is declared in the
corresponding sub-module(s), indicating that those specific modules are
not being cooled sufficiently. No/low flow fault is declared when more
than four high F flags are tallied within the window time, indicating the
majority of the battery pack is exhibiting temperatures higher than
expected. Discrimination between fan/pump failure and low air/coolant
flow faults can be achieved by adjusting a specific threshold level of the g
value for each fault. Lastly, if more than one low F flag is recorded, a high
flow fault is declared, indicating that the fan/pump is not operating as
expected. In this study, only a single fault occurring at once is considered
when identifying a fault.

The equations used to determine fault flag status are as follows:

eiðkÞ ¼ Tm;iðkÞ � T̂LPþFNN;iðkÞ i 2 f cell#1; 13; 24; 36; 37; 49; 60; 72g
ð6Þ
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giðkÞ ¼
giðk� 1Þ � log PDF eiðkÞ

� �� �
if eiðkÞ > μþ 3σ

giðk� 1Þ þ log PDF eiðkÞ
� �� �

if eiðkÞ < μ� 3σ

0 if μ� 3σ ≤ eiðkÞ≤ μþ 3σ

8
><

>:

ð7Þ

PDFðxÞ ¼ 1

σ ×
ffiffiffiffiffi
2π

p e�0:5ðx�μ
σ Þ2 ð8Þ

FiðkÞ ¼
High if giðkÞ > J1
Low if giðkÞ < J2
Null if J1 > giðkÞ > J2

8
><

>:
ð9Þ

where F is the fault flag and reads high for cases where measured tem-
perature exceeds modeled temperature and vice versa J1 and J2 are fault
thresholds that are tuned using fault free test cases on battery pack such that
faults are not declared under normal operating conditions. Details about
residual and fault thresholds determination can be found in Supplemen-
tary Note 3.

Theproposed algorithm is designed to be chemistry- and size-agnostic,
ensuring applicability across a variety of battery configurations. Although it
was validated using a pack suitable for a plug-in hybrid electric vehicle
(PHEV) with a short all-electric range, themethod’s reliance on cumulative
temperature estimation errors ensures adaptability to larger battery systems.
For batteries with slower temperature rise behaviors, such as those in long-
range EVs, the fault detection decision time may be slower. However, this
can be adjusted by fine-tuning the fault detection thresholds (J1 and J2)
using fault-free operational data, enabling faster or slower fault detection
based on application requirements. Furthermore, to extend the algorithm’s
applicability, we included tests at high C-rates, replicating real-world EV
charging conditions. These additional validations confirm the robustness of
the algorithm in diverse scenarios, making it suitable for both PHEVs
and EVs.

Data availability
Data that support the findings of this study are available in Borealis Data
with the identifier ["https://doi.org/10.5683/SP3/THZTJC”]46.

Code availability
Code that generate the plots listed in this study are available in Borealis Data
with the identifier ["https://doi.org/10.5683/SP3/THZTJC”]46.
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